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1 Introduction

This whitepaper is part of ongoing effort to establish a robust
control system for the OpenQuadruped 3D-Printed Quadruped
project that is accurate, fast, easily accessible, and properly
abstracted. This paper is divided into 6 distinct sections that
attempt to address the above ideals: Introduction, Math,
Usage, Visualization, Performance, Optimizations.

In essence, an Inverse Kinematics (IK) model attempts to con-
vert some intuitive domain, like xyz cartesian coordinate sys-
tem, into directly useful values, like motor angles. Although at
the time of this writing, some IK models already exist online
for generic joints, none properly address both offsets present in
the hip joint, which can make a noticeable impact on stability.
Therefore, unlike existing implementations, my IK model ac-
counts for both possible joint offsets present in most quadruped
robots.
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2 Math

First, let’s understand the explicit objectives of the model:

It is important to draw attention to the fact that the view on
the right is a tilted X-Z view, which is tilted with respect to r0.
This allows us to carry over the r0 from our calculations from
the Y-Z view. Let’s get started:

We will start with the Y-Z view–the messier of the two.
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First, we calculate h1 h2 using simply Pythagorean Theorem:

h1 =
√
off 0

2 + off 1
2 (ref the first image for offset positions)

h2 =
√
z2 + y2

Ok, now let’s add some intermediary angles that we can com-
pute so that we figure out θh and r0.
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α0 = arctan (yz )

α1 = arctan (off1off0
)

α2 = arctan (off0off1
)

α3 = arcsin (h1∗sin (α2+90)
h2

) (law of sines)

α4 = 90 − (α3 + α2)
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α5 = α1 − α4

And finally: θh = α0 − α5

We can then use the Law of Sines to derive r0:

r0
sinα4

= h1
sinα3

r0 =
h1∗sinα4

sinα3

Now that we’ve gotten our r0 value, we can move on
to the Tilted X-Z view :

We already know: shoulder, wrist, x, and r0. The first step in
this view is to compute the third leg’s value (the rightmost leg
labeled h):
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h =
√
r20 + x2

Now, compute φ through simple trigonometry:

sinφ = x
h

φ = arcsin(xh)

All sides of the visible triangle are now explicitly defined. Use
Law of Cosines to get the θs (shoulder angle):

Note that s & w correspond to shoulder & wrist lengths, respectively.

cos (θs + φ) = h2+s2−w2

2h∗s

θs = arccos (h
2+s2−w2

2h∗s )− φ

Now that the θs (shoulder angle) is computed, the only value
that remains is θw (wrist angle) using the Law of Cosines:

θw = arccos (w
2+s2−h2

2∗w∗s )

At this point, we now have the inverse kinematics for a 3 DOF
leg completely solved. This means that given any xyz coordinate
(within the bounds of the control range of the actuator), we can
determine the exact joint angles–and thus the motor angles–that
we need to go to.
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3 Usage

Now that we can effectively command the quadruped’s legs to
any xyz position, this section explores the possible applications.
There are two main ways we can utilize the leg IK: 6-axis body
pose translation and rotation or moving the legs to certain posi-
tions in order to walk/trot/gallop according to a higher control
structure.

The latter option is trivial on this end of the control structure.
The complexity comes from planning gaits and generating leg
trajectories, whose time-parameterized positions are then fed
into this IK model for each leg. Therefore, I will leave this ap-
plication to a future paper where I discuss gait planning and leg
trajectory generation.

The former option requires further inverse kinematics, but in the
scope of the quadruped’s body rather than just the leg scope.
To clarify, the 6-axis body pose translation and rotation refers
to translating the body along the x, y, z axis and rotating about
the Euler Angles: yaw, pitch, and roll.

Body Translation
Body translation along the x, y, z axis is actually relatively triv-
ial as well. In order to translate the body along a given axis,
you simply translate each leg in the same direction by the same
magnitude. For instance, to translate the body 20mm down, I
would simply lower the z input to each leg by 20mm. The same
principle applies to all of the directions, and multiple transla-
tions can be applied commutatively.
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Body Rotation
Body rotation about the Euler Angles is a bit more difficult.

Let’s start with yaw. Intuitively, when we increment yaw, we
expect the body to rotate about the z axis. If we traced an
arbitrary point during the yaw rotation, we would expect the
resultant drawing to be a circular arc. Noting the relationship
between the yaw translation and the intuitive circle arc actually
yields our solution.

The frame above is from the perspective right above the dog
facing down. The rectangle represents the quadruped’s body,
the small circles represent the feet, and the large circle represents
the path that the feet will follow. The fundamental notion of the
yaw rotation is that by moving the feet xy positions constrained
by the large circle, the body will rotate in the opposite direction
by the same amount.
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So let’s walk through one of the legs. In the diagram above,
you should note that the large circle (clearly a constant radius)
is defined by the xy euclidean distance from the origin of the
quadruped to each leg. Since the circle’s radius is maintained
throughout the transformation, we can use this as a starting
point for our calculations.

d =
√
(xg2) + (yg2)

α0 = arctan
xg
yg

α1 = θyaw + α0
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We can then get our final global (body scope) x and y values for
the given leg through simple trigonometry:

xnew = d ∗ sinα1

ynew = d ∗ cosα1

Before just plugging in these equations into your IK solver, you
should note that the vertical flip of this math requires an opera-
tion change–meaning this math isn’t perfectly symmetrical. The
front two joints (FL & FR) use the above equations, whereas the
back two legs (BL & BR) flip the cos and sin functions so that
the new x value is computed using the cos function instead of
sin and vice versa for the new y value. A final note is that these
new values are the x & y positions of the leg in terms of the
body scope. You can’t just feed these values directly into the
leg IK solver until you convert it back to the hip joint scope,
which can be done by subtracting half of the body dimensions
from the global x & y values.

Note: Pitch and Roll will be added in a future revision of this
paper.

4 Visualization

You can find instructions for running the visualization on my
github page for this project:
https://github.com/adham-elarabawy/OpenQuadruped
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Body X Translation

Body Y Translation

Body Z Translation
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Body Yaw Rotation

XYZ Translation + Yaw Rotation

5 Performance

Leg IK computations for 4 legs was tested on a teensy 4.0 &
3.6 and formal performance metrics weren’t profiled because
the limiting factor in speed was blocking serial communication.
However, with 2-way serial communication between one of the
teensy and a RPi 4B+, performance upwards of 240+ fps was
observed. The observed fps increased proportionally to serial
baud rate, indicating that the serial comms, NOT the 4 leg IK
computations, were the limiting factor. For most quadruped
robot platforms, 240fps+ Inverse Kinematics is much higher
than needed, and any further improvement in performance will
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not result in significant improvements.

6 Optimizations

The computations are currently all floating-point without any
of the standard floating-point optimizations (i.e. scaling by a
factor of 10 and rounding to int). If more performance is desired,
one could perform these optimizations.
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